ultra-thin two-dimensional tin sulfide for broadband photodetectors

admin knowledge341Read

ultra-thin two-dimensional tin sulfide for broadband photodetectors
researchers at the royal melbourne institute of technology in australia have synthesized a series of monolayer and multilayer two-dimensional tin sulfide (sns) with millimeter diameters using liquid metal tin over large areas.

the high carrier mobility and absorption coefficients of atomic-level thickness tin sulfide have the potential for a wide range of applications in electronics and optoelectronic devices. however, the strong interlayer interactions make large-area synthesis challenging, leading to limited practical applications. the researchers first surface sulfide molten metal tin at 350°c in a hydrogen sulfide atmosphere; then peel off the thin layer of tin sulfide formed on the top surface of molten tin using the van der waals imprint transfer technique to obtain millimeter-scale single- or multilayer two-dimensional tin sulfide; and subsequently transfer it to silicon, glass, and other substrates. it was found that the non-polarizing property makes no macroscopic force between molten tin and its sulfide surface, which can realize the complete separation of 2d tin sulfide. using sub-nanometer 2d tin sulfide as raw material, photodetector devices were prepared by photolithography, which exhibited spectral response properties in the deep uv to near ir range (280~850 nm) with a spectral responsiveness of 927 a/w, three orders of magnitude higher than commercial photodetectors.

ultra-thin two-dimensional tin sulfide for broadband photodetectors

this research provides a new method for preparing large-size two-dimensional materials, which will promote the development of high-performance photodetectors and is important for the development of optoelectronic circuits, sensing and biomedical fields.

admin
  • by Published on 2022-12-06 15:17:40
  • Reprinted with permission:https://www.ohans.cn/11462.html